Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein.
نویسندگان
چکیده
The apical domain of the embryo is partitioned into distinct regions that will give rise to the cotyledons and the shoot apical meristem. In this article, we describe a novel screen to identify Arabidopsis thaliana embryo arrest mutants that are defective in this partitioning, and we describe the phenotype of one such mutant, bobber1. bobber1 mutants arrest at the globular stage of development, they express the meristem-specific SHOOTMERISTEMLESS gene throughout the top half of the embryo, and they fail to express the AINTEGUMENTA transcript normally found in cotyledons. Thus, BOBBER1 is required to limit the extent of the meristem domain and/or to promote the development of the cotyledon domains. Based on expression of early markers for apical development, bobber1 mutants differentiate protodermis and undergo normal early apical development. Consistent with a role for auxin in cotyledon development, BOBBER1 mutants fail to express localized maxima of the DR5:green fluorescent protein reporter. BOBBER1 encodes a protein with homology to the Aspergillus nidulans protein NUDC that has similarity to protein chaperones, indicating a possible role for BOBBER1 in synthesis or transport of proteins involved in patterning the Arabidopsis embryo.
منابع مشابه
BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance.
Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the ...
متن کاملASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of AUXIN-RESPONSE-FACTOR and class 1 KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis
Leaf primordia form around the shoot apical meristem, which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for appropriate lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many genes that specify such patterning have been identified, but regulation by upstream factors of the expression of...
متن کاملA gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning.
Lateral organ emergence in plant embryos and meristems depends on spatially coordinated auxin transport and auxin response. Here, we report the gain-of-function iaa18-1 mutation in Arabidopsis, which stabilizes the Aux/IAA protein IAA18 and causes aberrant cotyledon placement in embryos. IAA18 was expressed in the apical domain of globular stage embryos, and in the shoot apical meristem and ada...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملEmbryo-Specific Zinc Finger Protein Gene Required for Heart-Stage Embryo Formation in Arabidopsis
We used virtual subtraction, a new gene isolation strategy, to isolate several genes of interest that are expressed in Arabidopsis embryos. These genes have demonstrated biological properties or have the potential to be involved in important biological processes. One gene isolated by virtual subtraction is PEI . It encodes a protein containing a Cys 3 His zinc finger domain associated with a nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2009